A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays.

نویسندگان

  • Adam D Brooks
  • Kimy Yeung
  • Gregory G Lewis
  • Scott T Phillips
چکیده

Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing signal amplification of thiocyanated Gold nanoparticles in the presence of different ions

Detecting is the most important section in all kinds of sensors. In this regard, the amplification of surface plasmon resonance intensity of gold colloids nanoparticles (GNPs) was studied in the presence of several ions. GNPs were synthesized and then capped by thiocyanate and characterized via DLS and TEM image. In the next step the effect of different concentrations of ions such as iron, copp...

متن کامل

Comparing signal amplification of thiocyanated Gold nanoparticles in the presence of different ions

Detecting is the most important section in all kinds of sensors. In this regard, the amplification of surface plasmon resonance intensity of gold colloids nanoparticles (GNPs) was studied in the presence of several ions. GNPs were synthesized and then capped by thiocyanate and characterized via DLS and TEM image. In the next step the effect of different concentrations of ions such as iron, copp...

متن کامل

A small molecule sensor for fluoride based on an autoinductive, colorimetric signal amplification reaction.

This article describes a small molecule reagent that is capable of detecting fluoride down to 0.12 mM (2.3 ppm) in water. The reagent reveals this level of fluoride through a novel autoinductive signal amplification reaction that produces an unambiguous colorimetric readout.

متن کامل

Gold nano-particles as electrochemical signal amplifier for immune-reaction monitoring

A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...

متن کامل

Gold nano-particles as electrochemical signal amplifier for immune-reaction monitoring

A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical methods : advancing methods and applications

دوره 7 17  شماره 

صفحات  -

تاریخ انتشار 2015